Your support makes the Astronaut Database and Launch Tracker possible, and keeps all Supercluster content free.
SUPPORTYour support makes the Astronaut Database and Launch Tracker possible, and keeps all Supercluster content free.
SUPPORTRocket Lab's 39th Electron mission, called "Baby Come Back" will deploy seven satellites to space and include an attempt to recover the rocket's first stage after it splashes down in the ocean.
The ‘Baby Come Back’ mission is a rideshare mission and will carry satellites for multiple customers, including:
NASA’s Starling mission is a four CubeSat mission designed to test technologies to enable future “swarm” missions. Spacecraft swarms refer to multiple spacecraft autonomously coordinating their activities to achieve certain goals. Starling will demonstrate technologies for in-space network communications, onboard relative navigation between spacecraft, autonomous maneuver planning, and execution, and distributed spacecraft autonomy - an experiment for small spacecraft to autonomously react to observations, paving the way for future science missions.
Space Flight Laboratory (SFL) selected Rocket Lab to launch Telesat’s LEO 3 demonstration satellite which will provide continuity for customer and ecosystem vendor testing campaigns following the decommissioning of Telesat’s Phase 1 LEO satellite.
Spire Global will launch two 3U satellites carrying Global Navigation Satellite System Radio Occultation (GNSS-RO) payloads to replenish its fully deployed constellation of more than 100 multipurpose satellites. Spire’s satellites observe the Earth in real time using radio frequency technology. The data acquired by Spire’s GNSS-RO payloads provide global weather intelligence that can be assimilated into weather models to improve the accuracy of forecasts.
Spire is the largest producer of GNSS-RO weather data, collecting over 20,000 RO profiles a day.
Courtesy of Rocket Lab.
Designed, manufactured, and launched by Rocket Lab, Electron is a two-stage launch vehicle powered by liquid oxygen (LOx) and rocket-grade kerosene (RP-1). By incorporating an orbital transfer vehicle stage (Kick Stage) that can deploy multiple payloads to unique orbits on the same mission, Electron can support dedicated missions and rideshares.
Specs
Height: 18 meters (59 feet)
Diameter: 1.2 meters (4 feet)
Payload Capacity: Up to 300 kilograms (660 pounds) to low Earth orbit (LEO)
Stages: Two-stage rocket
First Stage Engines: Nine Rutherford engines
Second Stage Engine: One Rutherford engine
Propellant: Liquid oxygen (LOX) and kerosene (RP-1)
Electron utilizes advanced carbon composite technologies throughout the launch vehicle structures, including all of Electron’s propellant tanks. The carbon-composite construction of Electron decreases mass by as much as 40 percent compared with traditional aluminum launch vehicle structures. Rocket Lab fabricates tanks and other carbon composite structures in-house to improve cost efficiency and drive rapid production.
Technical Specifications
Height: 18 m / 59 ft
Diameter: 1.2 m / 3.9 ft
Stages: 2 + Kick Stage
Wet mass: 13,000 kg / 28,660 lb
Payload to LEO: 300 kg / 661 lb
Electron is powered by the in-house designed and produced additively manufactured Rutherford engines.
First Stage
Electron’s first stage consists of nine sea-level Rutherford engines, linerless common bulkhead tanks for LOx and RP-1, and an interstage.
Rocket Lab’s flagship engine, the 5,600 lbf (24 kN) Rutherford, is an electric pumped LOx/ kerosene engine specifically designed for the Electron launch vehicle. Rutherford adopts an entirely new electric propulsion cycle, making use of brushless DC electric motors and high-performance lithium polymer batteries to drive its propellant pumps. This cuts down on much of the complex turbomachinery typically required for gas generator cycle engines, meaning that the Rutherford is simpler to build than a traditional engine but can achieve 90% efficiency. 130 Rutherford engines have been flown to space on Electron as of July 2020. Rutherford is also the first oxygen/hydrocarbon engine to use additive manufacturing for all primary components, including the regeneratively cooled thrust chamber, injector pumps, and main propellant valves. The Stage 1 and Stage 2 Rutherford engines are identical, with the exception of a larger expansion ratio nozzle for Stage 2 for improved performance in near-vacuum-conditions. All aspects of the Rutherford engines are completely designed in-house and are manufactured directly at our Long Beach headquarters in California, USA.
Second Stage
Electron’s second stage consists of a single vacuum-optimized Rutherford engine, and linerless common bulkhead tanks for LOx and kerosene. With an expanded nozzle, Electron’s second-stage engine produces a thrust of 5,800 lbf and has a specific impulse of 343 sec.
The 1.2 m diameter second stage has approximately 2,000 kg of propellant on board. The Electron Stage 2 has a burn time of approximately five minutes with a Rutherford vacuum engine as it places the Kick Stage into orbit.
High Voltage Batteries (HVBs) batteries provide power to the LOx and kerosene pumps for high-pressure combustion while a pressurant system is used to provide enough pump inlet pressure to safely operate. During the second stage burn, two HVBs power the electric pumps until depletion, when a third HVB takes over for the remainder of the second stage burn. Upon depletion, the first two HVBs are jettisoned from Electron to reduce mass and increase performance in flight.
The engine thrust is directed with electromechanical thrust vector actuators in two axes. Roll control is provided via a cold gas reaction control system (RCS
Kick Stage
Rocket Lab’s Kick Stage offers our customers unmatched flexibility for orbital deployment. The Kick Stage is a third stage of the Electron launch vehicle used to circularize and raise orbits to deploy payloads to unique and precise orbital destinations. The Kick Stage is powered by Rocket Lab’s in-house designed and built Curie engine. In its simplest form, the Kick Stage serves as in-space propulsion to deploy payloads to orbit. It its most advanced configuration the Kick Stage becomes Photon, Rocket Lab’s satellite bus that supports several-year duration missions to LEO, MEO, Lunar, and interplanetary destinations.
Courtesy of Rocket Lab
Rocket Lab's Launch Complex 1A (LC-1A) on the Māhia Peninsula on New Zealand's North Island is part of the company's first launch site, with another under construction at the Mid-Atlantic Regional Spaceport on Wallops Island, Virginia.
An isolated location, the Māhia launch site hosted its first orbital launch attempt of Electron in May 2017 and its first successful orbital launch in January 2018.
Together with Rocket Lab's third launch pad in Virginia, their launch sites can support up to 132 Electron launch opportunities every year.
The Māhia location has two launch pads (LC-1A and LC-1B) and two separate integration hangers to permit simultaneous and protected processing of two payloads for flight at the same time.
LC-1A is the original pad at the Māhia site, with LC-1B launching its first mission in February 2022.
Photo: Rocket Lab
As a recovery mission, Rocket Lab will be attempting to splash down and retrieve Electron’s first stage.
After launch and stage separation, Electron’s first stage will return to Earth under a parachute in preparation for splashdown several hundred kilometers down range from Launch Complex 1. Rocket Lab’s recovery vessel will then extract the stage from the water for transport back to Rocket Lab’s production complex for assessment. Rocket Lab is not flying any pre-flown engines on this mission.
Caption courtesy of Rocket Lab.
Rocket Lab's Launch Complex 1 on the Mahia Peninsula on New Zealand's North Island is the company's first of two launch pads, the other being under construction at the Mid-Atlantic Regional Spaceport on Wallops Island, Virginia.
An isolated location, the Mahia launch site hosted its first orbital launch of Electron in May 2017 and first successful orbital launch in January 2018.
The Mahia location has one launch pad (LC-1) and two separate intergration hangers to permit simultaneous and protected processing of two Electron missions' payloads for flight at the same time.
A podcast exploring the amazing milestones that changed space history, the wildest ideas that drive our future, and every development in this new Golden Age of Space.
Your support makes the Astronaut Database and Launch Tracker possible, and keeps all Supercluster content free.
SupportCOPYRIGHT 2021 SUPERCLUSTER LLC