Next Launch:
Calculating...

PENDINGLaunch Time

Nations
United States of America
United States of America
Agencies
SpaceX
SpaceX
NASA
NASA
Rocket Lab
Rocket Lab
Date: September 2025
Time: not yet determined

This goes

to space

IMAP

The Interstellar Mapping and Acceleration Probe (IMAP) mission will simultaneously investigate two of the most important issues in space physics today: the acceleration of energetic particles and the interaction of the solar wind with the interstellar medium.

This revolutionary mission includes a suite of 10 instruments working together to resolve fundamental scientific questions about the local interstellar medium, the boundaries surrounding our solar system, and how particles are accelerated to high energies in space.

IMAP offers wide-ranging and groundbreaking opportunities for scientific discovery. For example, it will reveal how cosmic rays are filtered by the heliosphere. These particles pose risks to astronauts and technological systems and may even play a role in the formation and presence of life in the universe.

The IMAP science team consists of many experts in instrumentation, data analysis, theory and modeling, as well as in the understanding of particle acceleration and the global heliosphere. The mission is led by Principal Investigator Prof. David McComas from the Space Physics Group at Princeton University. IMAP's 10 instruments will provide the first comprehensive in-situ and remote global observations to uncover the fundamental physical processes that shape our solar system's evolving space environment. Additional information about the mission can be found in the Open Access IMAP Paper.

Courtesy of IMAP.

This goes

to space

SWFO-L1

The Space Weather Follow On Lagrange 1 (SWFO-L1) mission is a deep-space mission operating in a Lissajous orbit at the Sun-Earth Lagrange 1 (L1) point, enabling upstream measurements of solar wind disturbances before they reach Earth. It will provide continuous measurements of the sun’s corona and of the solar wind at the L1 point and transmit continuous real-time data to Earth.

The SWFO-L1 Observatory will have a 5-year mission life with on-board consumables to last 10 years. The spacecraft and instruments are high heritage designs. Only the Compact CORongraph (CCOR) instrument, reference Section 2.2 included technology development which was completed early in the program. SWFO-L1 will be launched as a rideshare with NASA’s Interstellar Mapping and Acceleration Probe (IMAP) mission, scheduled for launch the second half of 2025.

Courtesy of NOAA.

This goes

to space

GLIDE

The GLIDE mission will provide insights into how Earth’s exosphere is influenced by changes in space, including the solar wind, shown here flowing from the Sun in this illustration. Credits: NASA

In 2022, Rocket Lab was selected by Ball Aerospace to manufacture the Solar Array Panel (SAP) to power NASA’s Global Lyman-Alpha Imager of Dynamic Exosphere (GLIDE) spacecraft. GLIDE is a heliophysics mission intended to study variability in Earth’s atmosphere and is expected to launch in 2025.

The SAP will utilize SolAero by Rocket Lab’s high-efficiency, radiation-hardened, quadruple-junction Z4J solar cells, laid down on carbon composite facesheet panels manufactured at the company’s facilities in Albuquerque, New Mexico.

Rocket Lab has provided power to multiple spacecraft as part of NASA’s Heliophysics Division missions including the Parker Solar Probe, the first-ever mission to “touch” the Sun that launched in 2018, and the Magnetospheric Multiscale (MMS) mission, a robotic space mission to study Earth’s magnetosphere that launched in 2015.

Courtesy of Rocket Lab.

On this

rocket

Falcon 9 (Block 5)

Falcon 9 is a reusable, two-stage rocket designed and manufactured by SpaceX for the reliable and safe transport of people and payloads into Earth orbit and beyond.

Falcon 9 is the world’s first orbital-class reusable rocket.

Stats


Total launches: 425


Total landings: 381


Total reflights: 354


The Falcon 9 has launched 52 humans into orbit since May 2020

Specs


Height: 70 m / 229.6 ft


Diameter: 3.7 m / 12 ft


Mass: 549,054 kg / 1,207,920 lb


Payload to Low Earth Orbit (LEO): 22,800 kg / 50,265 lb


Payload to Geostationary Transfer Orbit (GTO): 8,300 kg / 18,300 lb


Payload to Mars: 4,020 kg / 8,860 lb

On January 24, 2021, Falcon 9 launched the first ride-share mission to Sun Synchronous Orbit. It was delivering a record-setting 143 satellites to space. And while this was an important mission for SpaceX in itself, it was also the moment Falcon 9 overtook United Launch Alliance’s Atlas V for the total number of consecutive successful launches.

SpaceX’s Falcon 9 had become America’s workhorse rocket, launching 31 times in 2021. It has already beaten that record this year, launching almost an average of once a week. While most of the launches deliver Starlink satellites to orbit, the company is still launching the most commercial payloads to orbit, too.

Falcon 9 is a medium-lift launch vehicle, with the capability to launch over 22.8 metric tonnes to low earth orbit. Unlike any other rocket, its first stage lands back on Earth after separating from its second stage. In part, this allows SpaceX to offer the cheapest option for most customers with payloads that need to reach orbit.

Under its ride-share program, a kilogram can be placed in a sun-synchronous orbit for a mere 1.1 million dollars, far cheaper than all other currently operating small satellite launch vehicles.

The reusability and fast booster turnaround times have made Falcon 9 the preferred choice for private companies and government agencies. This has allowed SpaceX to capture a huge portion of the launch market.

Photo courtesy of Jenny Hautmann for Supercluster.

From this

launch site

SLC-40 - Cape Canaveral Space Force Station, Florida

Space Launch Complex 40 (SLC-40) is one of two launch sites leased by SpaceX at Cape Canaveral Space Force Station (CCSFS) in Florida, specifically designed for preparing and launching Falcon 9 rockets. Constructed in the early 1960s, SLC-40 was initially used for 55 Titan III and Titan IV rocket launches, including the Cassini-Huygens mission to Saturn. The pad was active from June 18, 1965, to April 30, 2005.

SpaceX began leasing SLC-40 in 2007, converting it to support Falcon 9 rockets. The pad was first upgraded to accommodate the original version of Falcon 9 and later received another upgrade in 2013 to handle the larger, reusable Falcon 9 rocket. On September 1, 2016, an explosion during a Falcon 9 fueling test caused severe damage to the pad. It was rebuilt rapidly, with construction completed in just 10 months, from mid-February to late November 2017. SLC-40 resumed operations with the successful launch of a Dragon capsule to the International Space Station on December 15, 2017.

After adding a crew access arm to the launch tower, SpaceX launched their first crewed mission from SLC-40 on Saturday, September 28th 2024 for NASA's Crew-9 mission to the International Space Station.

Under SpaceX’s management, SLC-40 has been the site of numerous significant missions. Notable launches include the first all-commercial Dragon mission to the International Space Station, NASA’s DSCOVR mission, the Transiting Exoplanet Survey Satellite (TESS) for NASA and MIT, the first satellite for Turkmenistan, the classified Zuma mission for Northrop Grumman and the U.S. government, the first GPS-III satellite, and the Beresheet lunar lander for Israel. Additionally, in September 2024, SLC-40 will host its first crewed launch with SpaceX’s Crew-9 mission, marking a new milestone for the pad.

Cape Canaveral is a major launch site with four currently active launch pads for Atlas V, Delta IV Heavy, Falcon 9, and Minotaur rockets. Located on Florida’s east coast, it offers extensive access to space for a variety of missions, including those targeting the Space Station, Geostationary Earth Orbit, the Moon, interplanetary destinations, and polar trajectories. The site’s location ensures that launches occur over the open Atlantic Ocean, minimizing risks to populated areas.

Cape Canaveral is often confused with or referred to alongside NASA’s Kennedy Space Center on Merritt Island. While they are separate installations, both play pivotal roles in the U.S. space program. Cape Canaveral has a storied history of significant space missions, including the launch of the first U.S. Earth satellite, Explorer 1, in 1958; the first U.S. astronaut, Alan Shepard, in 1961; the first U.S. astronaut in orbit, John Glenn, in 1962; the launch of the first two-person U.S. spacecraft, Gemini 3, in 1965; and the first U.S. uncrewed lunar landing mission, Surveyor 1, in 1966.

SLC-40 and Cape Canaveral continue to be integral to SpaceX’s ambitious launch schedule and the broader U.S. space program, supporting a wide range of missions and contributing to advancements in space exploration.

Photo courtesy of Jenny Hautmann for Supercluster

Booster

lands here

A Shortfall of Gravitas

A Shortfall of Gravitas" (ASOG) is one of SpaceX’s Autonomous Spaceport Drone Ships, designed to recover Falcon 9 rocket boosters at sea. Operating primarily in the Atlantic Ocean from Port Canaveral, Florida, ASOG joined SpaceX’s fleet in 2021. It plays a crucial role in SpaceX's reusability program, enabling the recovery and refurbishment of rocket boosters for future missions.

The name "A Shortfall of Gravitas" is inspired by science fiction author Iain M. Banks' Culture series, known for its playful and philosophical ship names. ASOG is fully autonomous, capable of sailing to its designated landing area and maintaining position without the need for a tugboat. Equipped with advanced thrusters, it ensures precise positioning even in challenging weather conditions and features a large landing platform for booster recovery.

ASOG is essential for missions requiring high velocities or distant orbits where landing on solid ground is not feasible. By recovering boosters at sea, ASOG helps SpaceX reduce costs and enhance the sustainability of spaceflight.

Photo courtesy to Jenny Hautmann for Supercluster

Here's where to view IMAP, SWFO-L1, GLIDE

Viewing Sites
  • Alan Shepard Park
  • A. Max Brewer Bridge
  • Apollo Saturn V Center / Banana Creek
  • Cherie Down Park
  • Cocoa Beach Pier
  • Jetty Park
  • Kennedy Space Center Visitor Complex
  • LC-39 Observation Gantry
  • Lori Wilson Park
  • Playalinda Beach
  • Rotary Riverfront Park
  • Sand Point Park
  • Sidney Fischer Park
  • Spaceview Park
Know Before You Go

SLC-40 was built in the early 1960s and hosted its first launch on June 18, 1965. Since then, it has launched nearly 100 missions on the Titan III, Titan IV, and Falcon 9 rockets.

During the Titan rocket era, SLC-40 was used to launch two interplanetary missions: Mars Observer to Mars and Cassini-Huygens to Saturn.

With the Falcon 9, the pad became the first Cape Canaveral site to host a launch to the International Space Station.

The pad is located on historic Cape Canaveral Air Force Station, FL - the primary launch center for the United States.

The Florida launch site handles the vast majority of U.S. launches every year and has been the starting point of numerous history-making missions for the United States, including:

  • First U.S. Earth satellite in 1958
  • First U.S. astronaut in 1961
  • First U.S. astronaut in orbit in 1962
  • First two-person U.S. spacecraft 1965
  • First three-person U.S. spacecraft in 1968

Space is for everyone. Here’s a link to share the launch with your friends.